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r! Abstract

In this paper we evaluate various proposed VLSI models of computa-

tion. While there is consensus on the appraisal of chip area, controversy
remains with regard to computation time. Thus we have analyzed in detail
the propagation of signals on dispersive lines. The results are expressed
in terms of adimensional parameters characteristic of any given fabrica-
tion technology. The conclusion is that both current and projected silicon
technologies fall within the realm of the capacitive model, where a dis-
persive line can be replaced by a capacitance proportional to its length.

Diffusion phenomena appear therefore to exceed the present VLSI horizom.
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A CRITIQUE AND AN APPRAISAL OF VLSI MODELS OF COMPUTATION

1. Introduction

The central question in the design and analysis of algorithms is the
definition of the model of computation to be adopted. 1Indeed, ";érformance" :
becomes meaningful only in relation to a given model. This model is
normally the simplified abstraction of a class of real or imaginary machines;
for example, the RAM or Random-Access-Machine, is the model of practically
the totality of existing (Von Neumann type) processors. The model of
computation is the simplest possible, compatibly with the requirement of
being realistic. In other words, while a model aims at capturing the
essential traits of a system or technology, its simplicity is what enables
theoretical appraisals of performance. . y, T

Very~Large-Scale-Integration (VLSI), as a computing environment, is no
exception. Indeed considerable attention has been paid [ 1]J[2][3][ 4]

to the definition of a suitable model. The basic parameters of any VLSI

computation model are chip area A and computation time T. VLSI systems

display a trade-off between these two parameters, each of which represents
a well-defined cost aspect: chip area is a measure of fabrication cost and
computation time is a measure of operating cost,

A general feature of all proposed = and presumably of all future - VLSI

models of computation is that a chip is viewed as a computation graph,

whose vertices are called nodes and whose arcs are called wires. Nodes are,
by and large, devices and are responsible for information processing (com-
putations of boolean functions); wires are just electrical connections,and

are responsible for both transfer of information and distribution of power
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supply and timing waveforms.

A given computation graph is to be laid-out in conformity with the
rules dictated by technology. These rules are geometric constraints on
admissible layouts and typically concern widths of wires and transistor

regions, clearances between wires, transistors, etc., number of metallic

K— layers, permissible orientations, etc.. Once a layout — that is, a legal
] planar embedding of the computation graph — has been produced, the chip
1: area A is normally the area of the smallest rectangle inscribing the lay-
1 ) out, and is the sum of the areas of wires, transistors, and, possibly, of

some wasted space. More formally we have:

Area Assumptions

(Wire area) All wires have minimum width A > 0 (which includes both

the actual wire width and the clearance between wire and any other chip
region) and at. most v = 2 wires can overlap at any point (hypothesis of
bounded number of layers). [All models.]

(Transistor-port area) Transistors and I/0 ports have minimum area2=l2.
[All models.]

A2.1 Transistors and I/0 ports have fixed avea cTAZ and cPlz,

respectively, for constants c_ and p [Brent-Kung [ 2]; Chazelle-~

T
Monier [ 4]].

A2.2 The ciiip is subdivided into compact regions, called '"self-timed'";
within a self-timed region A2.1 holds, while drivers of inter-
region wires have area proportional to the wire-length [Thompson
[ 2]; Seitz [ 5]].

(Chip area) The chip area A is at least the sum of the area of the

wires, of the transistors, and of the I/0 ports, and it is at most the

area of the smallest rectangle (or convex region) enclosing a legal

layout of the graph. [All models.]

L.
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These rules are quite simple and uncontroversial. Indeed no difficulty arises
in appraising the area of a given computation graph.

Radically different — as to a consensus among researchers — is the
situation regarding the computation time T. To acquire the necessary
perspective, let us call "an elementary action" the change of output of a
transistor and the transmission of this change on the wires connected to this
output. Thus, given a computation graph — which supports a prescribed
algorithm — the designer can describe the execution of the algorithm as a
sequence of sets of elementary actions. In other words, execution is con-
veniently modeled by a single-source/single-destination (corresponding to

begin and end, respectively) directed acyclic graph, whose arcs correspond

to elementary actions. Each arc is weighted with the time taken by the
action it represents. This knowledge, in principle, seems quite adequate
for the evaluation of T, by simply taking the value of the most time-con-
suming source-descination path in the acyclic graph. The difficulty lies,
however, in the assignment of values to the arc weights. Indeed, the
proposed computational models basically differ in this weight assignment.
More formally we have:

Time Assumptions

Tl, (Propagation time along a wire).
Tl.1 A bit requires a constant time v to propagate along a wire,
irrespectively of its length. (Brent~Kung). (We refer to this

case as the synchronous model.)

T1.2 A bit requires a time Q(logf) to propagate along a wire of iength
L (Mead-Conway; Thompson). (We refer to this case as the

capacitive model.)

PP S S UL S A sl PR . o
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Tl.3 A bit requires a time o<z2) to propagate along a wire of length
4 (Seitz; Chazelle-Monier). (We refer to this case as the

diffusion model.)

T2. (Algorithm time) The computation time of an algorithm is the time of
the longest sequence of wire propagation times between beginning and
completion of the computation. [All models.]

The choices for Tl reflect the profound controversy on VLSI computation

time. In a preliminary analysis, one is tempted to conclude that Tl.: is

the most realistic choice. Indeed, a wire is characterized by a resistance

and a capacitance which (in a given fabrication technique) both grow

linearly with the wire length; therefore, the time constant of the transistor

load grows proportionally to zz, whence the conclusion T1.3. Notice that

the computational implications of Tl.3 — as noted by Chazelle-Monier in

[ 4] — are drastic. 1Indeed, chip wires of substantially different lengths

are ruled out and connections must exist only between devices in very close

proximity. As a consequence, the only permissible computation graphs are

of the mesh type (or closely related), which rules out very fast parallel

computation, such as performed by computing structures of the type of the
shuffle-exchange [ 6], the cube-connected-cycles [ 7], or the tree-connected

machine [ 8].

Asymptotically, the line of arguments sketched above is unimpeachable,
and therefore — for the theoretician of algorithmics — valid, since
asymptotic analysis is the cornerstone of concrete computational complexity.
However, the asymptotics of VLSI have a much closer horizon than, for
example, the asymptotics of the Turing machine., This horizon, in fact, is
set by realistic utcunds on the expectatioms — in the current technology -

of minimum feature size and maximum chip size.
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Within this horizon, the line parameters must be weighed against the
nonnegligible output impedance of the driving transistor and the input
impedance of the driven transistor. To appraise this interaction, it is
therefore appropriate to take a critical look at the actual physical

phenomena occurring during an 'elementary action''.

2. A mathematical model of wire switching

Perhaps the most characteristic feature of present-day VLSI technology

is the fact that, irrespective of the choice of the devices (MOS-FET versus

bipolar, for example) wires are realized as dispersive lines. This nature

of wires is what determines the time behavior of networks (and must be
reflected in the computation model) and the choice of devices, or of their
operating regimes, has a nonessential effect on it. Therefore, with

reference to dispersive line VLSI technology, any reasonable device selection

is representative of the general problem.
In particular, we shall carry out our analysis with reference to the

CMOS technology [ 9]. 1In figure la we have illustrated the circuit being
considered. Tl is an n-channel MOS transistor, initially cut-off. Its
drain load — that is the wire AB and the gate capacitance of the driven
transistor T2 — is initially charged to voltage VO' So, with reference to
(IDS’VDS) characteristic curves of figure 1b, Pl is the initial operating
point of Tl. At t =0 a step voltage vg = VO is applied at the gate of Tl;
after a time To ~ negligible with respect to the other intervening times —
the current Io corresponding to vg = VO is established and the operating
point moves to P2' From this point on, the operating point moves on the

vg = Vo curve towards the origin and the transistor load discharges through

the channel. It is our objective to analyze this phenomenon.
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Figure 2. The model (a) and the idealized characteristics.

The circuit is modeled as in figure 2a, where C, is the gate

0

capacitance of T, and the line, of length £, has resistance r and capacitance

2

c per unit of length. Transistor T, is modeled as a (variable) resistor
Ro, to reflect the shape of the vg = V0 characteristic curve. 1In particu-
lar, we approximate the latter as in figure 2b with two straight line

segments, meeting at the pinch-off voltage V the saturated regime

PO’
is modeled by a horizontal segment starting at (VDS’IDS) = (VO,IO), while
the so-called ohmic regime is modeled by a segment passing through the origin. We

shall now study the general discharge regime, and later specialize it to

the two regimes defined above.




2.1 General solution.

let v(x,t) and i(x,t) denote the values of the line voltage and
current at abscissa x and time t, respectively. From Ohm's law and the

definition of capacitance we obtain

a—V = _ri .a—i- = - l!
ox ? dx at ?
whence
2 2
v v 971 i
— Trc sy, =5 =TIC oo, ¢9)
axz at ax2 3t

These are instances of the classical diffusion equation (or heat equatiomn),

which has been assiduously studied over the past century. It seem natural
to suspect that we are dealing with a standard textbook problem. However,
our boundary conditions deserve special attention.

We assume that the initial conditions be provided by
v(x,0) = vyx), x¢& [0,£] 2)

(or, alternatively, i(x,0) = io(x)) where vo(x) is an arbitrary function,
while the boundary conditions at x = 0 and x = £ are supplied by the nature

of the devices, that is,

v(0,t) ='Roi(0st), tz0, )

v s
Co Sg(z,t) =1(Z,t), ¢t

N
o

“)

Here RO is a constant.

It is convenient to normalize time and distance, obtaining the

normalized variables

—‘
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N
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After introducing the adimensional parameters p = r!L/Ro and y = cz/Co, the

corresponding equations for voltage V(£,r) and current I(§,r) become

2 2
il aw,  2-4 (1'b)
€ T 3€

V(E,0) = vy(48), € € [0,1] @2'a), I(8,0) = i,(45), §€ [0,1] (2'b)
ay 31 31

$(0,7) =pV(0,7) = 0 (3'a), a—g(o,ﬂ -p $20,m) =0 ()
21y ey Ear = 0 4'a) 8L (1,r) +YI(L,r) =0 ¢
aEz T Y a§ T = 3 ag T Y 3T

The diffusion equation is normally solved by separation of variables.
Considering the current, we seek a general solution of the form I(E,r) =

gE)h(r). Equation (1'b) is thus equivalent to the two equations

2
§—§-+ uzg =0, %E + pzh =0
dg T

for constant u. Any function of the form (Acosuf + Bsinug)e-u T is a
solution of (1'b); the constant u is any of the eigenvalues of the problem,
i.e., any choice which satisfies the boundary value problem (3'b),(4'b).
Specifically, after some obvious algebra, from (3'b) and (4'b) we obtain

the characteristic equation

= Yo L _p_
BTYE W Y )

The infinitely many solutions of (5) occur symmetrically with respect to
0. Therefore we restrict ourselves to y > 0. (A graphical display of the
solution set is given in figure 3). The eigenvalues {ui: i=0,1,...}

are indexed so that g < < ...; note that u, > (2i-1)~/2 for 1L 2 1. As

*1

is well-known, to each My there corresponds an eigenfunction gi(g) which
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Figure 3. Illustration of the solutions of the characteristic equation.
simultaneously satisfies
81(2) +ule, (€) = 0 (")
i’ i%i ?
1" - ! - "
8](0) - pgj(0) =0, 3"
' = "

Unfortunately, relation (3"), which is equivalent to pgi(O) + pigi(O) =0,
fails to realize the classical Sturm-Liouville condition [10], so that
fgi(i): i =1,2,...} is not a set of orthogonal functions. However by

defining the "inner product'" of functions on [0,l1] in the following uncon-

ventional way

1
((u,v3) 27 u@v(g)dg + MO ®)

0

It is easily shown that the eigenfunctions can be normalized so that

((gy>8)) = 3y (7

j)
where Sij is the Kronecker symbol. Since (3") applied to the general

expression g(I) = AcosuI + Bsinug yields A = -(p/u)B, we have:
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= ing . - &
8; ) = Gy (sinp s - o

: cosu,€) (8)

where Gi is a constant. We can now project — in the sense of our inner

product (6) — the initial condition I(§,0) on the set {gi(g)}, and obtain

1, 4(a(E.0),8,6M)

whence the general solution for the current is

- ulr
@) = T LE @ )

2.2 Analysis of the saturated regime

As mentioned earlier, in the saturated regime starting at t = 0,

capacitor CO and the line are at voltage VO’ and the transistor is modeled

as a current generator with current value -1 The circuit is modeled as

0

in figure 4. Therefore, boundary conditions (3) must be replaced by the

—_— I(E,7)

0 V(E,T)

Figure 4. Model of the saturated regime.

new nonhomogeneous conditions
i(0,t) = -IO.

The current I(%,~) can thus be expressed as

I(5,7) = Io(g) + Il(gy")

Dty - A - s PO W U Y
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where Il(g,f) satisfies homogeneous boundary conditioms

11(0,1') =0
aI (3"!)
|52 + YL (L) = 0

with initial conditions Il(§,0) = -IO(E), while the stationary term Io(§)
satisfies the boundary conditions

IO(O) = -IO

BIO

a—g'(l) + YIo(l) = 0.

The latter, and equation (1'b), immediately yield
I,E) = IyGg & - 1)
0 0§+ :

Turning now to II(E,T), note that condition (3"') implies Ry = ®, or
equivalently, p = 0. As a consequence the boundary conditions for the

eigenfunctions {gi(g)} become

g;(0) =0

g (1) +vg, (1) =0

which are of the Sturm-Liouville type. Indeed, from (8) the eigen-

functions become

L

It should be noted that the eigenvalue ug = 0 does not yield a valid
eigenfunction.
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and they form an orthonormal set in the conventional sense. The coefficients

Ii are therefore expressed as

(where ( ) denotes the conventional inner product) and
2
© "u.i"r
I.(€,r) = T I.g.(8)e
1 i®i
i=1
In conclusion
2
« ‘IJ-i'T
IE,m) = TyGiy 8D + Z, Lsi®e T (10)
We shall refer to the two terms in the right side of ( 10) as the statiomary
and transient terms, respectively.
The expression of V(l,r), the voltage at the gate capacitor end of

the line, is obtained from I(l,r) and the capacitor equation, as

2 2

2 T ref I 2 = g. (1) “u.T

rch 0 rejh i i

V(l,?) = V.- [1ae)e=v,- T+ T I, <1-e ) (11)
07 ¢y 4, 07 Co(1+Y) Co o1 lp‘i

(Note the corrective factor rcz2 due to the normalization of time.) From
this, by integrating I(§,r) along the line, we obtain

1
V(0,r) = V(L) + x4 [ I(Tym)an.
0

From this expression for V(0,r) we can determine the time PO at which

V(0,r) = VPO’ i.e. the time at which the regime changes. Assuming that

VPO/VO = 0.8, by numerical evaluation we have ascertained that for v = 103
at + = TPO the transient term of ( 10) is all but negligible (< 10-8.1(§,TP0»,

Therefore in this range of v, we may safely assume

- = = -
I(:’TPO)" Io(.\{+1 > 1)

as the initial condition for the current in the ohmic regime,
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2.3 Analysis of the ohmic regime

n In this case, the phenomenon is governed by (1'b) (3'b) (4'b) with

initial condition

1(5,0) = IyGET § - L. 2"b)
-
This expression is projected on the basis of the eigenfunctions (8)
according to the unconventional rule (6), thereby obtaining
= T (—— -
) L = LoGrT By - K)
where Hi’ and Ki (1 = 0,1,...) are easily computable functions of the
L3 parameters u, p, and Y. It follows that
© -p.zq-
= —X _y - i
1@ = Ig T G By - Ks (e ( 12)

From (g—¥=-r21) we readily obtain the expression of V(€,r), as follows:

g
V(E,m) =V(0,m) -1t [ I(M,r)dn
0
2

@ y -ui'rné
=-~RyI(0,7)-TLi, T 7 H;-K;)e . 8 (Madl
i=0 0
that is,
-] -‘J,ZT
3 = - i
V(E,T) = Rgl iEO(Y_LH Hy - K)E; (B)e (13)
with
B 0G,
= é ,,F’D L T 2 Lipnaz (2)
£.6) % 8,(0) +o gi(”.})d'f‘.hu_ (cosu.3 vy sinug)
0 i i
(2)

It can be shown that the {fi(g)} are a set of eigenfunctions of the

general solution of (1'a),(3'a),(4'a).

it et b *4‘f4i-----in-n---h---------------------J




3. Discussion and conclusions.

Expressions (11) and (13), which respectively give the voltage V(E,T)
in the saturated and ohmic regimes, are the objective of our analysis.
In any given technology the ratio Y/p = cRo/rC0 is a constant; therefore

only one parameter describes the behavior. Several discharge curves have

been plotted in figure 5, for the values of vy = 10-2, 10-1, 1, 10, 102, 103.

Taking as propagation delay the instant tPR for which v(1,t V.,~0.2V

pr) = Vru

po and Y. On a purely

0’

we have plotted in figure 6 the relation between t

Figure 5. Discharge curves for v = 10-2,10-1,...,103.

The broken lines describe the discharge at
constant current.

. /
s /|

10 ///

-9 e

10

10 0°2 107! 1 10 10% 10° 10%y

Figure 6. The relation between CPR and v.




qualitative basis, at this point it is interesting to observe the following
facts (here we assume that p < IO-AV, as in current technology):
A (i) For small values of ¥y (roughly, < 100), the propagation delay

is practically constant and is determined by the characteristics

of the devices. This is the unchallenged domain of the constant
delay (or synchronous model).
- (ii) For larger values of y (roughly, 100 <y< 103), the propagation
delay is basically proportional to y (i.e. to the wire length £).
This is the domain of the capacitive model.
(iii) For very large values of y (roughly, v > 103), the dependency of
A the propagation delay upon Y begins to deviate from linearity,

i.e. the effects of the dispersive transmission line begin to be

2 o

felt. This is the domain of the diffusion model.

'l On a less qualitative basis, we have examined expression (13) and
evaluated V(§,r) by summing at first a very large number of terms of the
series in the right side, and next restricting the calculation to the first

a term (corresponding to i = 0). Since e is very close to 0 and My > (21-1)m/2,

as was to be expected the sum of all other terms is negligible with respect

to the first term. Therefore we shall now consider the approximate — but

‘ basically valid — expression

2
STy
V(Er) = Ry Gl Hy-K)EBle © (14)

The time constant of the discharge, in umnormalized time t, has the

expression

Ho

where — we recall — Uy is the smallest positive solution of equation (5).

If in (5) we expand tg&oin Taylor series we obtain
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2141 _ yp 1 _ "o

L.+ T t.u — -
0 i=1 i~ 0 Y+p p.o Y+p
whence
Y +0 2 21
ty = ROCO(I +y +0)(1+ T+y+o igl tikg ) (15)
A ot 24
Letting e (Y,p) = (Y+p) I tikg /(1+y+p), ¢ gives the relative deviation
i=1

of t:D from ROCo(l + Y + p), which is linear in p and vy and gives the delay
in an idealized capacitive model. In this model the dispersive line is

replaced by a single equivalent capacitance of value cZ(l + o/v), where

o/y is a constant in any given fabrication technology; indeed Co(l +y+0p)

C, +ci(l+p/y). It is therefore of interest to obtain the behavior of ¢

0

as a function of p and v. A set of contour lines of ¢ is plotted in a

logarithmic diagram in figure 7.
3
10 P T

i
~ 1

Diffusion |
L0 - -

LD Ja=2 -1

10 o) u :
Figure 7. Contour lines of

s

€ (p,yY)-
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It seems reasonable to try to define in this diagram the regions of
validity of each of the three models: synchronous, capacitive, diffusion.
Specifically, referring to equation (15), we may (somewhat arbitrarily)
define the region of the synchronous model as the one where tD £ ZRDC0
(that is, the time constant is at most twice that due to the devices alone);
by an equally arbitrary criterion, we may define the region of the
capacitive model as the one where ¢ £ 1 (a deviation which at most cor-
responds to doubling the propagation delay). This region is shown unshaded
in figure 7. In the same diagram each technology is represented by a
straight line of slope +1, since — as we noted — in any given technology
o = KIY (Kl’ a constant). Current MOS technology is characterized by the

following parameter values:

Feature width Q) = 2.5 um
Field oxide thickness = 1 um
Gate oxide thickness = 600 i
Aluminum thickness = 1 um

Power supply voltage =5V
We assume that 2\ and 3\ be, respectively, the channel length of transistors
and the width of aluminum wires; in addition the minimum channel width is

chosen 40 [ 1]. Recalling that the resistivity of aluminum is 0.28X10-7 (m

that the dielectric constant of SiO2 is 0.46 ’<10-10 F/m, and that the

electron mobility in Si is about 0.8x10°1 mZ/Vsec (we refer here to the

n-channel portion of CMDS), we obtain the following values (see [l] [1l1]):

. . 3
= 0.98 mA, Ro 4.05x10° 0, CO
3 -

r = 3.78x10° O/m, ¢ = 3.46x10°

-?
= 4.12x10"° pF
10

L
F/m
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- whence p/y = rCO/cRo = 1.10x10'4. The corresponding straight-line is shown

. in figure 7. In addition, assuming a maximum chip width of 10 mm, we have

-—

Y & 84. The corresponding point is also shown in figure 7.

In a scaled-down technology of the foreseeable future, not all
parameters are likely to be changcd according to a fixed ratio. 1Indeed
it appears that "feature size'", gate oxide thickness, and power supply will
be scaled down, while there is a strong interest in maintaining the thick-

nesses of both aluminum and field oxide. Therefore a reasonable set of

parameters of a future scaled-down technology will be

. Feature width 0.5 pm
S Field oxide thickness

Gate oxide thickness = 150 i

1 um

Aluminum thickness 1 um

Power supply voltage =3 V

K Correspondingly we obtain: I, = 1.4 mA, Ry = 1.69X 10° Q, Cy = 6.5 1073 pF,
r = 1.89x 104 Q/m, ¢ =6.93x% 10.]'l F/m, whence p/y = 0.992 X 10-3. Moreover,
assuming a maximum chip width of 50 mm, we obtain Ymax £ 5.65X 102. The

[ /] corresponding curve and point are also plotted in figure 7.

The conclusion we extract from the preceding analysis is that not only
the current but also the projected MOS-FET VLSI technologies fall in the
~ domains of either the synchronous or the capacitive models. 1In the latter
propagation delay is proportional to the length of the wires. Note, how-

ever, that this propagation delay is computed in the hypothesis that both

L
the driving and the driven transistors be standard (i.e., of minimum size).
However, by raising the channel width of the driving transistor, the
- current IO increases and tPR decreases. 1Indeed — as suggested by Carver-
o

Mead [ 1] and Thompson [ 3] — if the channel width is proportional to the

capacitive load for all transistors, one approaches constant propagation

time and, presumably, current demnsity becomes the limiting factor.
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It must be noted, however, that projected future technology may reach
n the (conventional) boundary of the capacitive model region. Beyond this

| boundary, a possible design philosophy — as suggested by Chazelle-Monier

{4] — is to introduce repeaters on long wires in order to achieve delay
proportional to the wire length. Note, however, that in this case we can

no longer avail ourselves of channel width control. Another alternative,
entirely in the realm of speculation, could be the development of integrated
nondispersive transmission lines, where speed of light considerations are

the controlling phenomena.
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